Earn $$ with WidgetBucks!

Welcome to PR-Sekolah

Posted by PR-Sekolah On February 2009

Selamat datang di PR-Sekolah - Solusi Pas Pelajar Cerdas.Kalian bisa mendapatkan Artikel, Animasi, Software hingga Berita Pendidikan disini khusus buat kamu.Ada juga Rubrik Techno, Dunia Islam, juga Hiburan.Special for you by PR-Sekolah !

PR-Sekolah Logo

Kumpulan Animasi Pelajaran

Posted by PR-Sekolah On February 2009

Disini kalian bisa mendownload animasi dan software untuk kegiatan belajar dan mengajar secara cuma-cuma. Animasi disini dibuat oleh Pustekkom maupun oleh pembuat yang lainnya. Software pendidikan ini meliputi software untuk pelajaran IPA (Kimia, Fisika, Biologi) dan Matematika.

PR-Sekolah Logo

Berita Pendidikan Up-to-Date

Posted by PR-Sekolah On February 2009

Kalian bisa mengetahui tentang kabar terkini dari dunia pendidikan di Indonesia, mulai dari berita untuk siswa hingga para guru yang dihimpun dari pewarta berita terkemuka. Jangan sampai kalian tidak mengetahui dunia pendidikan negeri sendiri ya!

PR-Sekolah Logo

Request Tugas dan Keinginan Kalian

Posted by PR-Sekolah On February 2009

Kalan bisa merequest tugas dan keinginan disini yang masih meliputi tentang pendidikan, pelajaran, artikel dan teknologi. Sebisa dan secepat mungkin PRSekolah akan memproses dan menayangkan request kalian, para pelajar cerdas !

PR-Sekolah Logo

Masuklah ke Gelombang Konsentrasi Otak

Posted by PR-Sekolah On February 2009

Dengarkan Music Meditation yang berada di sebelah kanan dan relaksasikan diri kalian untuk dapat meningkatkan konsentrasi dan kenyamanan untuk belajar. Belajarlah dengan Cerdas, bukan dengan Keras. Belajarlah dengan Cermat, bukan dengan Giat!

PR-Sekolah Logo
CO.CC:Free Domain

Limit Fungsi Trigonometri

Posted by Wahyu Putra On 5:23 PM

KETENTUAN

Untuk x <<< ( x
® 0 ) maka sin x » x
(x <<<> » setara )

l i m sin x = 1 l i m tg x = 1
x ® 0 x
x ® 0 x

l i m x = 1 l i m x = 1
x ® 0 sin x
x ® 0 tg x

PERLUASAN

l i m sin ax = a/b l i m tg ax = a/b
x ® 0 bx
x ® 0 bx


l i m ax = a/b l i m ax = a/b

x ® 0 sin bx
x ® 0 tg bx


l i m sin ax = a/b l i m tg ax = a/b
x ® 0 sin bx
x ® 0 tg bx



l i m sin ax = a/b l i m tg ax = a/b
x ® 0 tg bx
x ® 0 sin bx

Rumus-rumus trigonometri yang sering digunakan untuk merubah fungsi:

cos x = sin (90° - x)
ctg x = tg (90° - x)
sin ax = 2 sin ½ax cos ½ax

cos ax = 1- 2 sin² ½ax
cos²x = 1 - sin²x



HAL-HAL KHUSUS

l i m axm + bxm-1 + .... =
x ® ¥ pxn + qxn-1 + ...
¥ untuk m > n ;
a/p untuk m =n ;
0 untuk m <>

l i m Öax2 + bx + c - Ödx2 + ex + f
x ® ¥
¥ untuk a > d ;
b-e untuk m =n ;
2Öa
-¥ untuk a <>

Bila salah satu suku belum berbentuk tanda akar maka dibentuk dengan cara mengkuadratkan kemudian menarik tanda akar.


DALIL L'HOSPITAL

Jika fungsi f dan g masing-masing terdifferensir pada titik x= a
dan f(a) = g(a) = 0 atau f(a) = g(a) = ¥ maka

l i m f(x) = l i m f(x)
x ® ¥ g(x) x ® a g(x)


CONTOH LIMIT FUNGSI ALJABAR


1. l i m x2 - 5x + 6 = (3)2 - 5(3) + 6 = 0
x ® 3

2. l i m 3x - 2 = ¥ (*) Uraikan
x ® ¥ 2x + 1 ¥

x(3 - 2/x) = 3 - 2/x = 3 - 0 = 3
x(2 - 1/x) 2 + 1/x 2 - 0 2

atau langsung gunakan hal khusus

3. l i m x2 - x - 1 = ¥ (*) Uraikan
x ® ¥ 10x + 9 ¥

x(x - 1 - 1/x) = x - 1 - 1/x = ¥ - 1 - 0 = ¥ =¥
x(10 - 9/x) 10 + 9/x 10 + 0 10

atau langsung gunakan hal khusus


4. l i m x2 - 3x + 2 = 0 (*) Uraikan
x ® 2 x2 - 5x + 6 0

(x - 1)(x - 2) = (x - 1) = 2 - 1 = -1
(x - 3)(x - 2) = (x - 3) = 2 - 3

atau langsung gunakan hal khusus ® Differensial


5. l i m x3 - 3x2 + 3x - 1 = 0 (*) Uraikan
x ® 1 x2 - 5x + 6 0

(x - 1)3 = (x - 1)2 = (1 - 1)2 = 0
(x - 1) (x - 5) (x + 5) (1 + 5) 6

atau langsung gunakan hal khusus ® Differensial



6. l i m Ö2 + x - Ö2x = 0 (*) Hilangkan tanda akar dengan
x ® 2 x - 2 0 mengalikan bentuk sekawan

(x - 1)3 = (x - 1)2 = (1 - 1)2 = 0 = 0
(x - 1) (x - 5) (x + 5) (1 + 5) 6

atau langsung gunakan hal khusus ® Differensial



7. l i m (3x - Ö9x2 + 4x) = ¥ - ¥ (*) Hilangkan tanda akar
x ® ¥

l i m (3x - Ö9x2 + 4x ) = é 3x - Ö9x2 + 4x ù = (*) Hilangkan tanda
x ® ¥ ë 3x - Ö9x2 + 4x û akar

l i m (9x2 - (9x2 + 4x) = l i m -4x =
x ® ¥ 3x + Ö(9x2 + 4x) x ® ¥ 3x + 3x Ö[1+(a/9x)]

l i m -4 = -4 = -2
x ® ¥ 3 + 3Ö(1 + 0) 6 3

atau langsung gunakan hal khusus

CONTOH LIMIT FUNGSI TRIGONOMETRI

1. l i m sin 2x = 0 (*)
x ® 0 tg 3x 0

sin 2x = 3x 2 = 1 . 1 . 2 = 2
2x tg 3x 3 3 3

2. l i m 1 - cos 2x = 0
x ® 0 sin 2x 0

1 - (1 - 2 sin² 2x) = 2 sin² x = sin x = tg x = 0
2 sin x cos x 2 sin x cos cos x

3. l i m 1 - cos x = 0
x ® 0 3x² 0

2 sin² (½x) = sin (½x) . sin (½x) = 1 . 1 . 1 = 1
3 . 4 . (½x) 6 (½x) (½x) 6 6

atau langsung gunakan hal khusus ® Differensial

4. l i m sin x - sin a = 0 (*)
x ® 0 x - a 0

2 cos ½(x+a) sin ½(x-a) = cos ½(x+a) . sin ½(x-a) =
x - a ½ (x - a )

cos ½(x+a) . 1 = cos ½(a+a) . 1 = cos a

atau langsung gunakan hal khusus ® Differensial

0 Response to "Limit Fungsi Trigonometri"

Post a Comment

Tinggalkan komentar anda atas postingan di atas guna menyempurnakan dan membangun untuk kedepannya.

Meditation Music

Program Tanam 1000 Blogs

Murid terlambat disuruh pulang. Guru terlambat dibuka dengan lapang. Tanya kenapa ?

Blog Archive

Supported Link